Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Recognit ; 36(1): e2993, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36112092

RESUMEN

Atomic force microscopy (AFM) was used to conduct single-molecule imaging of protein/DNA complexes involved in the regulation of the arabinose operon of Escherichia coli. In the presence of arabinose, the transcription regulatory protein AraC binds to a 38 bp region consisting of the araI1 and araI2 half-sites. The domain positioning of full-length AraC, when bound to DNA, was not previously known. In this study, AraC was combined with 302 and 560 bp DNA and arabinose, deposited on a mica substrate, and imaged with AFM in air. High resolution images of 560 bp DNA, where bound protein was visible, showed that AraC induces a bend in the DNA with an angle 60° ± 12° with a median of 55°. These results are consistent with earlier gel electrophoresis measurements that measured the DNA bend angle based on migration rates. By using known domain structures of AraC, geometric constraints, and contacts determined from biochemical experiments, we developed a model of the tertiary and quaternary structure of DNA-bound AraC in the presence of arabinose. The DNA bend angle predicted by the model is in agreement with the measurement values. We discuss the results in view of other regulatory proteins that cause DNA bending and formation of the open complex to initiate transcription.


Asunto(s)
Factor de Transcripción de AraC , Proteínas de Escherichia coli , Factor de Transcripción de AraC/genética , Factor de Transcripción de AraC/química , Factor de Transcripción de AraC/metabolismo , Proteínas de Escherichia coli/metabolismo , Microscopía de Fuerza Atómica , Citarabina/metabolismo , Proteínas Represoras/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas Bacterianas/metabolismo , Arabinosa/química , Arabinosa/metabolismo , Arabinosa/farmacología , Factores de Transcripción/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , ADN/metabolismo , Unión Proteica
2.
Nucleic Acids Res ; 50(10): 5974-5987, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35641097

RESUMEN

Rob, which serves as a paradigm of the large AraC/XylS family transcription activators, regulates diverse subsets of genes involved in multidrug resistance and stress response. However, the underlying mechanism of how it engages bacterial RNA polymerase and promoter DNA to finely respond to environmental stimuli is still elusive. Here, we present two cryo-EM structures of Rob-dependent transcription activation complex (Rob-TAC) comprising of Escherichia coli RNA polymerase (RNAP), Rob-regulated promoter and Rob in alternative conformations. The structures show that a single Rob engages RNAP by interacting with RNAP αCTD and σ70R4, revealing their generally important regulatory roles. Notably, by occluding σ70R4 from binding to -35 element, Rob specifically binds to the conserved Rob binding box through its consensus HTH motifs, and retains DNA bending by aid of the accessory acidic loop. More strikingly, our ligand docking and biochemical analysis demonstrate that the large Rob C-terminal domain (Rob CTD) shares great structural similarity with the global Gyrl-like domains in effector binding and allosteric regulation, and coordinately promotes formation of competent Rob-TAC. Altogether, our structural and biochemical data highlight the detailed molecular mechanism of Rob-dependent transcription activation, and provide favorable evidences for understanding the physiological roles of the other AraC/XylS-family transcription factors.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Escherichia coli , Factor de Transcripción de AraC/genética , Factor de Transcripción de AraC/metabolismo , Proteínas Bacterianas/metabolismo , Citarabina/metabolismo , ADN/química , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Activación Transcripcional
3.
Proteins ; 90(1): 186-199, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34369028

RESUMEN

To create bacterial transcription "circuits" for biotechnology, one approach is to recombine natural transcription factors, promoters, and operators. Additional novel functions can be engineered from existing transcription factors such as the E. coli AraC transcriptional activator, for which binding to DNA is modulated by binding L-arabinose. Here, we engineered chimeric AraC/XylS transcription activators that recognized ara DNA binding sites and responded to varied effector ligands. The first step, identifying domain boundaries in the natural homologs, was challenging because (i) no full-length, dimeric structures were available and (ii) extremely low sequence identities (≤10%) among homologs precluded traditional assemblies of sequence alignments. Thus, to identify domains, we built and aligned structural models of the natural proteins. The designed chimeric activators were assessed for function, which was then further improved by random mutagenesis. Several mutational variants were identified for an XylS•AraC chimera that responded to benzoate; two enhanced activation to near that of wild-type AraC. For an RhaR•AraC chimera, a variant with five additional substitutions enabled transcriptional activation in response to rhamnose. These five changes were dispersed across the protein structure, and combinatorial experiments testing subsets of substitutions showed significant non-additivity. Combined, the structure modeling and epistasis suggest that the common AraC/XylS structural scaffold is highly interconnected, with complex intra-protein and inter-domain communication pathways enabling allosteric regulation. At the same time, the observed epistasis and the low sequence identities of the natural homologs suggest that the structural scaffold and function of transcriptional regulation are nevertheless highly accommodating of amino acid changes.


Asunto(s)
Factor de Transcripción de AraC , Proteínas Bacterianas , Proteínas de Unión al ADN , Proteínas de Escherichia coli , Transactivadores , Regulación Alostérica , Aminoácidos/química , Aminoácidos/genética , Factor de Transcripción de AraC/química , Factor de Transcripción de AraC/genética , Factor de Transcripción de AraC/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Mutación/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transactivadores/química , Transactivadores/genética , Transactivadores/metabolismo
4.
J Bacteriol ; 203(23): e0018521, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34543107

RESUMEN

Francisella tularensis is a Gram-negative bacterium that causes a fatal human disease known as tularemia. The Centers for Disease Control and Prevention have classified F. tularensis as a category A tier 1 select agent. The virulence mechanisms of Francisella are not entirely understood. Francisella possesses very few transcription regulators, and most of these regulate the expression of genes involved in intracellular survival and virulence. The F. tularensis genome sequence analysis reveals an AraC (FTL_0689) transcriptional regulator homologous to the AraC/XylS family of transcriptional regulators. In Gram-negative bacteria, AraC activates genes required for l-arabinose utilization and catabolism. The role of the FTL_0689 regulator in F. tularensis is not known. In this study, we characterized the role of FTL_0689 in the gene regulation of F. tularensis and investigated its contribution to intracellular survival and virulence. The results demonstrate that FTL_0689 in Francisella is not required for l-arabinose utilization. Instead, FTL_0689 specifically regulates the expression of the oxidative and global stress response, virulence, metabolism, and other key pathways genes required by Francisella when exposed to oxidative stress. The FTL_0689 mutant is attenuated for intramacrophage growth and virulence in mice. Based on the deletion mutant phenotype, FTL_0689 was termed osrR (oxidative stress response regulator). Altogether, this study elucidates the role of the osrR transcriptional regulator in tularemia pathogenesis. IMPORTANCE The virulence mechanisms of category A select agent Francisella tularensis, the causative agent of a fatal human disease known as tularemia, remain largely undefined. The present study investigated the role of a transcriptional regulator and its overall contribution to the oxidative stress resistance of F. tularensis. The results provide an insight into a novel gene regulatory mechanism, especially when Francisella is exposed to oxidative stress conditions. Understanding such Francisella- specific regulatory mechanisms will help identify potential targets for developing effective therapies and vaccines to prevent tularemia.


Asunto(s)
Factor de Transcripción de AraC/metabolismo , Francisella tularensis/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Estrés Oxidativo/fisiología , Animales , Factor de Transcripción de AraC/genética , Regulación hacia Abajo , Francisella tularensis/patogenicidad , Eliminación de Gen , Prueba de Complementación Genética , Ratones , Ratones Endogámicos C57BL , Tularemia/microbiología , Virulencia
5.
Int J Mol Sci ; 22(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064685

RESUMEN

Pseudomonas aeruginosa encodes a large set of transcriptional regulators (TRs) that modulate and manage cellular metabolism to survive in variable environmental conditions including that of the human body. The AraC family regulators are an abundant group of TRs in bacteria, mostly acting as gene expression activators, controlling diverse cellular functions (e.g., carbon metabolism, stress response, and virulence). The PA3027 protein from P. aeruginosa has been classified in silico as a putative AraC-type TR. Transcriptional profiling of P. aeruginosa PAO1161 overexpressing PA3027 revealed a spectacular increase in the mRNA levels of PA3026-PA3024 (divergent to PA3027), PA3464, and PA3342 genes encoding proteins potentially involved in glycerolipid metabolism. Concomitantly, chromatin immunoprecipitation-sequencing (ChIP-seq) analysis revealed that at least 22 regions are bound by PA3027 in the PAO1161 genome. These encompass promoter regions of PA3026, PA3464, and PA3342, showing the major increase in expression in response to PA3027 excess. In Vitro DNA binding assay confirmed interactions of PA3027 with these regions. Furthermore, promoter-reporter assays in a heterologous host showed the PA3027-dependent activation of the promoter of the PA3026-PA3024 operon. Two motifs representing the preferred binding sites for PA3027, one localized upstream and one overlapping with the -35 promoter sequence, were identified in PA3026p and our data indicate that both motifs are required for full activation of this promoter by PA3027. Overall, the presented data show that PA3027 acts as a transcriptional regulator in P. aeruginosa, activating genes likely engaged in glycerolipid metabolism. The GliR name, from a glycerolipid metabolism regulator, is proposed for PA3027 of P. aeruginosa.


Asunto(s)
Factor de Transcripción de AraC/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucolípidos/metabolismo , Operón , Pseudomonas aeruginosa/metabolismo , Factor de Transcripción de AraC/genética , Proteínas Bacterianas/genética , Sitios de Unión , Humanos , Regiones Promotoras Genéticas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Transactivadores
6.
Nat Chem Biol ; 17(7): 817-827, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33903769

RESUMEN

The L-arabinose-responsive AraC and its cognate PBAD promoter underlie one of the most often used chemically inducible prokaryotic gene expression systems in microbiology and synthetic biology. Here, we change the sensing capability of AraC from L-arabinose to blue light, making its dimerization and the resulting PBAD activation light-inducible. We engineer an entire family of blue light-inducible AraC dimers in Escherichia coli (BLADE) to control gene expression in space and time. We show that BLADE can be used with pre-existing L-arabinose-responsive plasmids and strains, enabling optogenetic experiments without the need to clone. Furthermore, we apply BLADE to control, with light, the catabolism of L-arabinose, thus externally steering bacterial growth with a simple transformation step. Our work establishes BLADE as a highly practical and effective optogenetic tool with plug-and-play functionality-features that we hope will accelerate the broader adoption of optogenetics and the realization of its vast potential in microbiology, synthetic biology and biotechnology.


Asunto(s)
Factor de Transcripción de AraC/genética , Arabinosa/genética , Proteínas de Escherichia coli/genética , Ingeniería Genética , Luz , Factor de Transcripción de AraC/metabolismo , Arabinosa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo
7.
ACS Synth Biol ; 10(5): 1227-1236, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33915046

RESUMEN

Growth feedback, the inherent coupling between the synthetic gene circuit and the host cell growth, could significantly change the circuit behaviors. Previously, a diverse array of emergent behaviors, such as growth bistability, enhanced ultrasensitivity, and topology-dependent memory loss, were reported to be induced by growth feedback. However, the influence of the growth feedback on the circuit functions remains underexplored. Here, we reported an unexpected damped oscillatory behavior of a self-activation gene circuit induced by nutrient-modulating growth feedback. Specifically, after dilution of the activated self-activation switch into the fresh medium with moderate nutrients, its gene expression first decreases as the cell grows and then shows a significant overshoot before it reaches the steady state, leading to damped oscillation dynamics. Fitting the data with a coarse-grained model suggests a nonmonotonic growth-rate regulation on gene production rate. The underlying mechanism of the oscillation was demonstrated by a molecular mathematical model, which includes the ribosome allocation toward gene production, cell growth, and cell maintenance. Interestingly, the model predicted a counterintuitive dependence of oscillation amplitude on the nutrition level, where the highest peak was found in the medium with moderate nutrients, but was not observed in rich nutrients. We experimentally verified this prediction by tuning the nutrient level in the culture medium. We did not observe significant oscillatory behavior for the toggle switch, suggesting that the emergence of damped oscillatory behavior depends on circuit network topology. Our results demonstrated a new nonlinear emergent behavior mediated by growth feedback, which depends on the ribosome allocation between gene circuit and cell growth.


Asunto(s)
Proliferación Celular/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Retroalimentación Fisiológica/fisiología , Ingeniería Genética/métodos , Nutrientes , Factor de Transcripción de AraC/genética , Factor de Transcripción de AraC/metabolismo , Medios de Cultivo/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Redes Reguladoras de Genes , Genes Bacterianos , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Microorganismos Modificados Genéticamente , Modelos Genéticos , Modelos Moleculares , Plásmidos/genética , Regiones Promotoras Genéticas/genética , Ribosomas/metabolismo
8.
Nucleic Acids Res ; 49(5): e25, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33290521

RESUMEN

Ligand-inducible genetic systems are the mainstay of synthetic biology, allowing gene expression to be controlled by the presence of a small molecule. However, 'leaky' gene expression in the absence of inducer remains a persistent problem. We developed a leak dampener tool that drastically reduces the leak of inducible genetic systems while retaining signal in Escherichia coli. Our system relies on a coherent feedforward loop featuring a suppressor tRNA that enables conditional readthrough of silent non-sense mutations in a regulated gene, and this approach can be applied to any ligand-inducible transcription factor. We demonstrate proof-of-principle of our system with the lactate biosensor LldR and the arabinose biosensor AraC, which displayed a 70-fold and 630-fold change in output after induction of a fluorescence reporter, respectively, without any background subtraction. Application of the tool to an arabinose-inducible mutagenesis plasmid led to a 540-fold change in its output after induction, with leak decreasing to the level of background mutagenesis. This study provides a modular tool for reducing leak and improving the fold-induction within genetic circuits, demonstrated here using two types of biosensors relevant to cancer detection and genetic engineering.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , ARN de Transferencia/metabolismo , Factor de Transcripción de AraC/metabolismo , Arabinosa/metabolismo , Codón de Terminación , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ácido Láctico/metabolismo , Mutagénesis , Plásmidos/genética , Biosíntesis de Proteínas , ARN Catalítico , ARN de Transferencia/química , Factores de Transcripción/metabolismo
9.
Protein Eng Des Sel ; 332020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-33215672

RESUMEN

We previously described the design of triacetic acid lactone (TAL) biosensor 'AraC-TAL1', based on the AraC regulatory protein. Although useful as a tool to screen for enhanced TAL biosynthesis, this variant shows elevated background (leaky) expression, poor sensitivity and relaxed inducer specificity, including responsiveness to orsellinic acid (OA). More sensitive biosensors specific to either TAL or OA can aid in the study and engineering of polyketide synthases that produce these and similar compounds. In this work, we employed a TetA-based dual-selection to isolate new TAL-responsive AraC variants showing reduced background expression and improved TAL sensitivity. To improve TAL specificity, OA was included as a 'decoy' ligand during negative selection, resulting in the isolation of a TAL biosensor that is inhibited by OA. Finally, to engineer OA-specific AraC variants, the iterative protein redesign and optimization computational framework was employed, followed by 2 rounds of directed evolution, resulting in a biosensor with 24-fold improved OA/TAL specificity, relative to AraC-TAL1.


Asunto(s)
Factor de Transcripción de AraC , Técnicas Biosensibles , Proteínas de Escherichia coli , Escherichia coli , Ingeniería de Proteínas , Pironas/análisis , Resorcinoles/análisis , Factor de Transcripción de AraC/química , Factor de Transcripción de AraC/genética , Factor de Transcripción de AraC/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Sensibilidad y Especificidad
10.
PLoS Pathog ; 16(8): e1008776, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32845938

RESUMEN

Enteroaggregative Escherichia coli (EAEC) is a diarrheagenic pathotype associated with traveler's diarrhea, foodborne outbreaks and sporadic diarrhea in industrialized and developing countries. Regulation of virulence in EAEC is mediated by AggR and its negative regulator Aar. Together, they control the expression of at least 210 genes. On the other hand, we observed that about one third of Aar-regulated genes are related to metabolism and transport. In this study we show the AggR/Aar duo controls the metabolism of lipids. Accordingly, we show that AatD, encoded in the AggR-regulated aat operon (aatPABCD) is an N-acyltransferase structurally similar to the essential Apolipoprotein N-acyltransferase Lnt and is required for the acylation of Aap (anti-aggregation protein). Deletion of aatD impairs post-translational modification of Aap and causes its accumulation in the bacterial periplasm. trans-complementation of 042aatD mutant with the AatD homolog of ETEC or with the N-acyltransferase Lnt reestablished translocation of Aap. Site-directed mutagenesis of the E207 residue in the putative acyltransferase catalytic triad disrupted the activity of AatD and caused accumulation of Aap in the periplasm due to reduced translocation of Aap at the bacterial surface. Furthermore, Mass spectroscopy revealed that Aap is acylated in a putative lipobox at the N-terminal of the mature protein, implying that Aap is a lipoprotein. Lastly, deletion of aatD impairs bacterial colonization of the streptomycin-treated mouse model. Our findings unveiled a novel N-acyltransferase family associated with bacterial virulence, and that is tightly regulated by AraC/XylS regulators in the order Enterobacterales.


Asunto(s)
Acetiltransferasas/metabolismo , Factor de Transcripción de AraC/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/patogenicidad , Regulación Bacteriana de la Expresión Génica , Acetiltransferasas/genética , Acilación , Animales , Factor de Transcripción de AraC/química , Factor de Transcripción de AraC/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Operón , Filogenia , Conformación Proteica , Virulencia
11.
Infect Immun ; 88(10)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32690633

RESUMEN

Successful colonization by enteric pathogens is contingent upon effective interactions with the host and the resident microbiota. These pathogens thus respond to and integrate myriad signals to control virulence. Long-chain fatty acids repress the virulence of the important enteric pathogens Salmonella enterica and Vibrio cholerae by repressing AraC-type transcriptional regulators in pathogenicity islands. While several fatty acids are known to be repressive, we show here that cis-2-unsaturated fatty acids, a rare chemical class used as diffusible signal factors (DSFs), are highly potent inhibitors of virulence functions. We found that DSFs repressed virulence gene expression of enteric pathogens by interacting with transcriptional regulators of the AraC family. In Salmonella enterica serovar Typhimurium, DSFs repress the activity of HilD, an AraC-type activator essential to the induction of epithelial cell invasion, by both preventing its interaction with target DNA and inducing its rapid degradation by Lon protease. cis-2-Hexadecenoic acid (c2-HDA), a DSF produced by Xylella fastidiosa, was the most potent among those tested, repressing the HilD-dependent transcriptional regulator hilA and the type III secretion effector sopB >200- and 68-fold, respectively. Further, c2-HDA attenuated the transcription of the ToxT-dependent cholera toxin synthesis genes of V. cholerae c2-HDA significantly repressed invasion gene expression by Salmonella in the murine colitis model, indicating that the HilD-dependent signaling pathway functions within the complex milieu of the animal intestine. These data argue that enteric pathogens respond to DSFs as interspecies signals to identify appropriate niches in the gut for virulence activation, which could be exploited to control the virulence of enteric pathogens.


Asunto(s)
Factor de Transcripción de AraC/metabolismo , Intestinos/microbiología , Ácidos Palmíticos/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/patogenicidad , Animales , Factor de Transcripción de AraC/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Ácidos Grasos/genética , Proteínas de Transporte de Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/metabolismo , Regulación Bacteriana de la Expresión Génica , Islas Genómicas/genética , Ratones , Ácidos Palmíticos/química , Unión Proteica , Estabilidad Proteica , Salmonella typhimurium/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Virulencia/genética
12.
Appl Environ Microbiol ; 86(19)2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32709725

RESUMEN

Rhizobium tropici CIAT 899 is a broad-host-range rhizobial strain that establishes symbiotic interactions with legumes and tolerates different environmental stresses such as heat, acidity, or salinity. This rhizobial strain produces a wide variety of symbiotically active nodulation factors (NF) induced not only by the presence of plant-released flavonoids but also under osmotic stress conditions through the LysR-type transcriptional regulators NodD1 (flavonoids) and NodD2 (osmotic stress). However, the activation of NodD2 under high-osmotic-stress conditions remains elusive. Here, we have studied the role of a new AraC-type regulator (named as OnfD) in the symbiotic interaction of R. tropici CIAT 899 with Phaseolus vulgaris and Lotus plants. We determined that OnfD is required under salt stress conditions for the transcriptional activation of the nodulation genes and therefore the synthesis and export of NF, which are required for a successful symbiosis with P. vulgaris Moreover, using bacterial two-hybrid analysis, we demonstrated that the OnfD and NodD2 proteins form homodimers and OnfD/NodD2 form heterodimers, which could be involved in the production of NF in the presence of osmotic stress conditions since both regulators are required for NF synthesis in the presence of salt. A structural model of OnfD is presented and discussed.IMPORTANCE The synthesis and export of rhizobial NF are mediated by a conserved group of LysR-type regulators, the NodD proteins. Here, we have demonstrated that a non-LysR-type regulator, an AraC-type protein, is required for the transcriptional activation of symbiotic genes and for the synthesis of symbiotically active NF under salt stress conditions.


Asunto(s)
Factor de Transcripción de AraC/genética , Proteínas Bacterianas/genética , Lotus/microbiología , Phaseolus/microbiología , Rhizobium tropici/genética , Simbiosis/genética , Factor de Transcripción de AraC/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/metabolismo , Rhizobium tropici/metabolismo , Estrés Salino/genética , Activación Transcripcional/genética
13.
Int J Med Microbiol ; 310(5): 151436, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32654771

RESUMEN

Staphylococcus aureus is a gram-positive pathogenic bacterium and is capable of secreting numerous toxins interfering directly with the host to cause acute infections. Rbf, a transcriptional regulator of AraC/XylS family, has been reported to promote biofilm formation in polysaccharide intercellular adhesion (PIA) mediated manner to cause chronic infections. In this study, we revealed the new virulence-mediated role of Rbf that can negatively regulate the hemolytic activity. Furthermore, Rbf can specifically bind to the hla and psmα promoters to repress their expression, resulting in significantly decreased production of phenol-soluble modulins α (PSMα) and alpha-toxin. Accordingly, the rbf mutant strain exhibited the increased pathogenicity compared to the wild-type (WT) strain in a mouse subcutaneous abscess model, representing a type of acute infection by S. aureus. Collectively, our results provide a novel insight into the virulence regulation and acute infections mediated by Rbf in S. aureus.


Asunto(s)
Factor de Transcripción de AraC/metabolismo , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus/genética , Factores de Virulencia/metabolismo , Animales , Factor de Transcripción de AraC/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Regulación hacia Abajo , Femenino , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Hemólisis , Ratones , Ratones Endogámicos BALB C , Mutación , Regiones Promotoras Genéticas , Staphylococcus aureus/metabolismo , Virulencia , Factores de Virulencia/genética
14.
World J Microbiol Biotechnol ; 36(6): 82, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32458148

RESUMEN

Lysine is widely used in food, medical and feed industries. The biosynthesis of L-lysine is closely related to NADPH level, but the regulation mechanism between the biosynthesis of L-lysine in C. glutamicum and the cofactor NADPH is still not clear. Here, a high intracellular NADPH level strain C. glutamicum XQ-5Δpgi::(zwf-gnd) was constructed by blocking the glycolytic pathway and overexpressing the pentose phosphate pathway in the lysine-producing strain C. glutamicum XQ-5, and the intracellular NADPH level in strain XQ-5Δpgi::(zwf-gnd) was increased from 3.57 × 10-5 nmol/(104 cells) to 1.8 × 10-4 nmol/(104 cell). Transcriptome analyses pointed to Cgl2680 as an important regulator of NADPH levels and L-lysine biosynthesis in C. glutamicum. By knocking out the gene Cgl2680, the intracellular NADPH level of the recombinant C. glutamicum lysCfbr ΔCgl2680 was raised from 7.95 × 10-5 nmol/(104 cells) to 2.04 × 10-4 nmol/(104 cells), consequently leading to a 2.3-fold increase in the NADPH/NADP+ ratio. These results indicated that the regulator Cgl2680 showed the negative regulation for NADPH regeneration. In addition, Cgl2680-deficient strain C. glutamicum lysCfbr ΔCgl2680 showed the increase of yield of both L-lysine and L-leucine as well as the increase of H2O2 tolerance. Collectively, our data demonstrated that Cgl2680 plays an important role in negatively regulating NADPH regeneration, and these results provides new insights for breeding L-lysine or L-leucine high-yielding strain.


Asunto(s)
Factor de Transcripción de AraC/metabolismo , Corynebacterium glutamicum , Lisina/biosíntesis , NADP/metabolismo , Factor de Transcripción de AraC/genética , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Regulación Bacteriana de la Expresión Génica , Técnicas de Inactivación de Genes , Ingeniería Genética/métodos , Glucólisis , Peróxido de Hidrógeno/metabolismo , Leucina/biosíntesis , Vía de Pentosa Fosfato
15.
Infect Immun ; 88(6)2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32253248

RESUMEN

Enteroaggregative Escherichia coli (EAEC) is an E. coli pathotype associated with diarrhea and growth faltering. EAEC virulence gene expression is controlled by the autoactivated AraC family transcriptional regulator, AggR. AggR activates transcription of a large number of virulence genes, including Aar, which in turn acts as a negative regulator of AggR itself. Aar has also been shown to affect expression of E. coli housekeeping genes, including H-NS, a global regulator that acts at multiple promoters and silences AT-rich genes (such as those in the AggR regulon). Although Aar has been shown to bind both AggR and H-NS in vitro, functional significance of these interactions has not been shown in vivo In order to dissect this regulatory network, we removed the complex interdependence of aggR and aar by placing the genes under the control of titratable promoters. We measured phenotypic and genotypic changes on downstream genes in EAEC strain 042 and E. coli K-12 strain DH5α, which lacks the AggR regulon. In EAEC, we found that low expression of aar increases aafA fimbrial gene expression via H-NS; however, when aar is more highly expressed, it acts as a negative regulator via AggR. In DH5α, aar affected expression of E. coli genes in some cases via H-NS and in some cases independent of H-NS. Our data support the model that Aar interacts in concert with AggR, H-NS, and possibly other regulators and that these interactions are likely to be functionally significant in vivo.


Asunto(s)
Factor de Transcripción de AraC/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Factor de Transcripción de AraC/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Humanos , Modelos Biológicos , Eliminación de Secuencia , Virulencia/genética
16.
Commun Biol ; 2: 259, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31312728

RESUMEN

Antibiotic killing does not occur at a single, precise time for all cells within a population. Variability in time to death can be caused by stochastic expression of genes, resulting in differences in endogenous stress-resistance levels between individual cells in a population. Here we investigate whether single-cell differences in gene expression prior to antibiotic exposure are related to cell survival times after antibiotic exposure for a range of genes of diverse function. We quantified the time to death of single cells under antibiotic exposure in combination with expression of reporters. For some reporters, including genes involved in stress response and cellular processes like metabolism, the time to cell death had a strong relationship with the initial expression level of the genes. Our results highlight the single-cell level non-uniformity of antibiotic killing and also provide examples of key genes where cell-to-cell variation in expression is strongly linked to extended durations of antibiotic survival.


Asunto(s)
Antibacterianos/farmacología , Biología Computacional , Infecciones por Escherichia coli/tratamiento farmacológico , Biología de Sistemas , Factor de Transcripción de AraC/metabolismo , Carbenicilina/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Procesamiento de Imagen Asistido por Computador , Regiones Promotoras Genéticas , Procesos Estocásticos
17.
Biochemistry ; 58(26): 2867-2874, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31199118

RESUMEN

In Escherichia coli, the dimeric AraC protein actively represses transcription from the l-arabinose araBAD operon in the absence of arabinose but induces transcription in its presence. Here we provide evidence that, in shifting from the repressing to the inducing state, the behavior of the interdomain linker shifts from that of an α helix to that of a more flexible form. In vivo and in vitro experiments show that AraC with a linker sequence that favors helix formation is shifted toward the repressing state in the absence and presence of arabinose. Conversely, AraC containing a linker sequence that is unfavorable for helix formation is shifted toward the inducing state. Experiments in which the presumed helical linker is shortened or lengthened, protein helical twist experiments, are also consistent with a helix transition mechanism. Previous experiments have shown that, upon the binding of arabinose, the apparent rigidity with which the DNA binding domains of AraC are held in space decreases. Thus, arabinose likely controls the stability or rigidity of the interdomain linker. Circular dichroism experiments with peptides show that the helicity of the linker sequence can be controlled by the helicity of residues preceding the linker, providing a plausible mechanism for arabinose to control the repressing-inducing state of AraC protein.


Asunto(s)
Factor de Transcripción de AraC/metabolismo , Arabinosa/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Factor de Transcripción de AraC/química , Sitios de Unión , Escherichia coli/química , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/química , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , Multimerización de Proteína
18.
Biochemistry ; 58(26): 2875-2882, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31199144

RESUMEN

In the absence of arabinose, the dimeric Escherichia coli regulatory protein of the l-arabinose operon, AraC, represses expression by looping the DNA between distant half-sites. Binding of arabinose to the dimerization domains forces AraC to preferentially bind two adjacent DNA half-sites, which stimulates RNA polymerase transcription of the araBAD catabolism genes. Prior genetic and biochemical studies hypothesized that arabinose allosterically induces a helix-coil transition of a linker between the dimerization and DNA binding domains that switches the AraC conformation to an inducing state [Brown, M. J., and Schleif, R. F. (2019) Biochemistry, preceding paper in this issue (DOI: 10.1021/acs.biochem.9b00234)]. To test this hypothesis, hydrogen-deuterium exchange mass spectrometry was utilized to identify structural regions involved in the conformational activation of AraC by arabinose. Comparison of the hydrogen-deuterium exchange kinetics of individual dimeric dimerization domains and the full-length dimeric AraC protein in the presence and absence of arabinose reveals a prominent arabinose-induced destabilization of the amide hydrogen-bonded structure of linker residues (I167 and N168). This destabilization is demonstrated to result from an increased probability to form a helix capping motif at the C-terminal end of the dimerizing α-helix of the dimerization domain that preceeds the interdomain linker. These conformational changes could allow for quaternary repositioning of the DNA binding domains required for induction of the araBAD promoter through rotation of peptide backbone dihedral angles of just a couple of residues. Subtle changes in exchange rates are also visible around the arabinose binding pocket and in the DNA binding domain.


Asunto(s)
Factor de Transcripción de AraC/metabolismo , Arabinosa/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Factor de Transcripción de AraC/química , Sitios de Unión , ADN Bacteriano/metabolismo , Infecciones por Escherichia coli/microbiología , Escherichia coli K12/química , Proteínas de Escherichia coli/química , Humanos , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína
19.
BMC Microbiol ; 17(1): 170, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28774286

RESUMEN

BACKGROUND: In bacteria, many transcription activator and repressor proteins regulate multiple transcription units that are often distally distributed on the bacterial genome. To investigate the subcellular location of DNA bound proteins in the folded bacterial nucleoid, fluorescent reporters have been developed which can be targeted to specific DNA operator sites. Such Fluorescent Reporter-Operator System (FROS) probes consist of a fluorescent protein fused to a DNA binding protein, which binds to an array of DNA operator sites located within the genome. Here we have developed a new FROS probe using the Escherichia coli MalI transcription factor, fused to mCherry fluorescent protein. We have used this in combination with a LacI repressor::GFP protein based FROS probe to assess the cellular location of commonly regulated transcription units that are distal on the Escherichia coli genome. RESULTS: We developed a new DNA binding fluorescent reporter, consisting of the Escherichia coli MalI protein fused to the mCherry fluorescent protein. This was used in combination with a Lac repressor:green fluorescent protein fusion to examine the spatial positioning and possible co-localisation of target genes, regulated by the Escherichia coli AraC protein. We report that induction of gene expression with arabinose does not result in co-localisation of AraC-regulated transcription units. However, measurable repositioning was observed when gene expression was induced at the AraC-regulated promoter controlling expression of the araFGH genes, located close to the DNA replication terminus on the chromosome. Moreover, in dividing cells, arabinose-induced expression at the araFGH locus enhanced chromosome segregation after replication. CONCLUSION: Regions of the chromosome regulated by AraC do not colocalise, but transcription events can induce movement of chromosome loci in bacteria and our observations suggest a role for gene expression in chromosome segregation.


Asunto(s)
Factor de Transcripción de AraC/metabolismo , Escherichia coli K12/genética , Proteínas de Escherichia coli/metabolismo , Regiones Operadoras Genéticas , Factor de Transcripción de AraC/genética , Arabinosa/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Genes Reporteros , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Operón , Regiones Promotoras Genéticas , Proteína Fluorescente Roja
20.
PLoS Pathog ; 13(8): e1006545, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28806780

RESUMEN

The AraC Negative Regulators (ANR) comprise a large family of virulence regulators distributed among diverse clinically important Gram-negative pathogens, including Vibrio spp., Salmonella spp., Shigella spp., Yersinia spp., Citrobacter spp., and pathogenic E. coli strains. We have previously reported broad effects of the ANR members on regulators of the AraC/XylS family. Here, we interrogate possible broader effects of the ANR members on the bacterial transcriptome. Our studies focused on Aar (AggR-activated regulator), an ANR family archetype in enteroaggregative E. coli (EAEC) isolate 042. Transcriptome analysis of EAEC strain 042, 042aar and 042aar(pAar) identified more than 200 genes that were differentially expressed (+/- 1.5 fold, p<0.05). Most of those genes are located on the bacterial chromosome (195 genes, 92.85%), and are associated with regulation, transport, metabolism, and pathogenesis, based on the predicted annotation; a considerable number of Aar-regulated genes encoded for hypothetical proteins (46 genes, 21.9%) and regulatory proteins (25, 11.9%). Notably, the transcriptional expression of three histone-like regulators, H-NS (orf1292), H-NS homolog (orf2834) and StpA, was down-regulated in the absence of aar and may explain some of the effects of Aar on gene expression. By employing a bacterial two-hybrid system, LacZ reporter assays, pull-down and electrophoretic mobility shift assay (EMSA) analysis, we demonstrated that Aar binds directly to H-NS and modulates H-NS-induced gene silencing. Importantly, Aar was highly expressed in the mouse intestinal tract and was found to be necessary for maximal H-NS expression. In conclusion, this work further extends our knowledge of genes under the control of Aar and its biological relevance in vivo.


Asunto(s)
Factor de Transcripción de AraC/metabolismo , Escherichia coli Enteropatógena/metabolismo , Infecciones por Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Virulencia/fisiología , Animales , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli Enteropatógena/patogenicidad , Proteínas de Escherichia coli/metabolismo , Histonas/metabolismo , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...